Buffers

A buffer is an equilibrium b/w a weak acid and it's conjugate. The difference here is that that conjugate is added in comparable amounts, usually as a salt. Buffers are able to maintain a relatively constant pH when an acid or base is added. Important for a buffer - $\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \approx$ [$\mathrm{CH}_{3} \mathrm{COO}^{-}$]

Ex. $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COO}^{-}$system.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}
$$

Buffering action

1) Adding acid to a buffer

If an acid is added to a buffer then H^{+}combine w/ the $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions \& shift equilibrium to the LEFT - decrease in $\left[\mathrm{H}^{+}\right]$

- $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ increase a little bit
- [$\mathrm{CH}_{3} \mathrm{COO}^{-}$] decrease a little bit
- $\left[\mathrm{H}^{+}\right]$stays about the same though!

2) Adding base to a buffer

If a base is added to a buffer then OH^{-}ions combine w/ the $\mathrm{CH}_{3} \mathrm{COOH}$ \& shift equilibrium to the RIGHT - increase in $\left[\mathrm{H}^{+}\right]$

- [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$ decrease a little bit
- [$\left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$increase a little bit
- $\left[\mathrm{H}^{+}\right]$stays about the same though!

Buffer Capacity

Capacity refers to the amount of base or acid that a buffer can absorb w / o a significant change in pH . It is dependent on the number of moles of weak acid AND moles of conjugate base used for the buffer.

Most buffers have [ACID] \approx [SALT]
The higher the []'s (above) the more capacity a buffer has to buffer.

Choosing a buffer

$\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{Salt}]\left[\mathrm{H}^{+}\right]}{[\text {Acid }]} \quad$ but in a buffer $[$ ACID $]=[\mathrm{SALT}]$
Then $\mathbf{K a}_{\mathbf{a}}=\left[\mathbf{H}^{+}\right]$
Therefore a buffer w/ [ACID] \approx [SALT]. The pH of the buffer should stay around the pKa of the acid!

You can choose an acid/salt combo that yields the pH you want your buffer to be

Buffers... and you ©

pH of your blood is IMPORTANT - enzymes, blood, hemoglobin Your blood should have a pH of 7.4 (or else stuff goes wrong important stuff, like breathing)

$$
\mathrm{HCO}_{3(\mathrm{aq})}^{-}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Increase $\left[\mathrm{CO}_{2}\right] \rightarrow$ decrease in pH Decrease $\left[\mathrm{CO}_{2}\right] \rightarrow$ increase in pH

Ex. What buffer system could you use to create a pH of?
a) 4.7
b) 9.2

Ex. Which combos produce buffer systems?
a) $\mathrm{H}_{2} \mathrm{SO}_{3} / \mathrm{LiHSO}_{3}$
b) $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$
c) $\mathrm{KCl} / \mathrm{HCl}$
d) $\mathrm{HCN} / \mathrm{KCN}$

Titration Curves

3 types dealing with in Chemistry 12: SA/SB, SA/WB and WA/SB (won't do WA/WB)

Strong Acid/Strong Base (Pg 166/167)
Ex. Volume of 1.000 M NaOH added to 1.000 L of 1.000 M HCl vs pH
Data given on pg 166 but let's do some calculations to prove the data

NaOH (mL)	Calculation	pH
		0
0.00		
		0.22
250.0		

999.0		3.30
1000.0		7.00
1000.1		9.70
1500.0		13.30

Weak Acid/Strong Base

Ex. Volume 1.000 M NaOH added to 1.000 L of $1.000 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ vs pH

Data given on pg 169 but let's do some calculations to prove the data

NaOH (mL)	Calculation	pH
	RICE TABLE!	
		2.37
0.00		

250.0		
999.0		4.27
1000.0		9.74
1000.1		9.70

1 Block= $1 / 4$ "
$\frac{1}{\mathrm{x}}=\mathrm{V}$ Math-Aids.Com

From the graph

At the mid-point (half-way from zero to the end-point) you have added half the moles of base to completely neutralize the weak acid.

Here the moles of acid = moles of salt so...
[Salt] = [Acid]
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right][\text {Salt }]}{[\text { Acid }]} \quad$ so $\ldots \mathbf{K a}=\left[\mathbf{H}^{+}\right]$

At Midpoint $\mathbf{p H}=\mathbf{p K a}$
Titration curves can be used as a diagnostic for figuring out the identity of unknown acids

