Acid Base Equilibrium

General Acid/Base properties

Acids: taste sour (think vinegar) React w/ active metals --> produce H_{2(g)} Conduct electrical current Turn litmus paper red Reacts w/ base (neutralization)

Acid properties due to H^+ (H_3O^+) in solution

Bases: taste bitter (think soap) Feels slippery Conducts electrical current Turns litmus blue Reacts w/ acid (neutralization)

Basic properties due to OH⁻ in solution

Definitions:

Arrhenius

- Acids produce H⁺ in solution (Chem 11)
- Base produce OH⁻

Brønsted-Lowry

- Acid: proton (H⁺) donor
- Base: proton acceptor

These can be ions (charged) OR molecules (non-charged) Substances can also be **amphiprotic** \rightarrow can act as an acid OR base

Amphiprotic: NH₃, H₂O, HCO₃⁻ etc... (Both has H, and can accept H)

Conjugate acids & bases:

Conjugate acid/base pairs differ only by the number of hydrogens, the one with 1 MORE hydrogen is the acid, the one with 1 LESS hydrogen is the base. Conjugate pairs exist on either side of an acid-base equilibrium.

Ex.

$$\begin{array}{rrr} \mathsf{NH_4^+}_{(\mathsf{aq})} + \mathsf{H_2O}_{(\mathsf{I})} \rightleftharpoons \mathsf{NH}_{\mathsf{3}(\mathsf{aq})} + \mathsf{H_3O^+}_{(\mathsf{aq})} \\ \mathsf{Acid} & \mathsf{Base} & \mathsf{Base} & \mathsf{Acid} \end{array}$$

Ex. Identify the conjugates in the following

$$HCI_{(aq)} + OH^{-}(I) \rightleftharpoons CI^{-}(aq) + H_2O_{(aq)}$$

Water is amphiprotic!

Ex.

$$HF_{(aq)} + HCO_{3}(l) \rightleftharpoons F_{(aq)} + H_{2}CO_{3(aq)}$$

Ex.

$$HCN_{(aq)} + HSO_3^{-}(I) \rightleftharpoons CN^{-}(aq) + H_2SO_{3(aq)}$$

Hebden pg 115-118 - READ, pg 118-120 do Q's 13-19

Relative Strength of acid/bases

Concentration: # of moles (acid/base) in one liter of solution 20 M \rightarrow 1 x 10⁻¹⁰ M

Generally:

> 5M = concentrated < 5M = dilute</pre>

Strength: describes how readily a substance dissociates into ions.

Ex. $HCI \rightarrow H^+ + CI^-$ 100% $HF \rightleftharpoons H^+ + F^-$ <<100%

100% dissociation = strong, less than 100% = weak

Strong acids – dissociate into H₃O⁺ 100%

Ex. HClO₄, HI, HBr, HCl, HNO₃, H₂SO₄

Weak acids – all other acids Forms an equilibrium b/w un-dissociated acid and its ions.

 $CH_3COOH_{(aq)} + H_2O_{(I)} \rightleftharpoons CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Usually \leftarrow towards reactants

Strong bases – there are 3 strong bases that you need to know about:

NH₂⁻, O²⁻, OH⁻ (Usually OH⁻ forms in aqueous solutions)

 $O^{2-} + H_2O \rightarrow 2OH^-$

Weak bases – all remaining bases (on the table) are weak they form an equilibrium.

$$NH_{3(aq)} + H_2O_{(I)} \rightleftharpoons OH^{-}_{(aq)} + NH_4^{+}_{(aq)}$$

Levelling effect: all strong acids and strong bases are equal

 $\begin{array}{ll} H_2O \,+\, HCI \rightarrow H_3O^+ \,+\, CI^- & \mbox{in water the strongest acid is H_3O^+} \\ H_2O \,+\, HNO_3 \rightarrow H_3O^+ \,+\, NO_3^- \end{array}$

K_w – the Water Constant

 $2H_2O_{(I)} \rightleftharpoons OH^-_{(aq)} + H_3O^+_{(aq)}$

 $K_w = 1.0 \times 10^{-14} = [OH^-][H_3O^+] - @ 25^{\circ}C$

Ex. What is the $[OH^{-}]$ in a 0.005M solution of HCl?

Ex. What is the $[H_3O^+]$ in a 0.0000007 M solution of NaOH?

pH – a common way to represent concentration of an acid

 $pH = -log [H_3O^+] \text{ or } -log [H^+]$

As [H⁺] increases, pH decreases Because pH is log base 10, means every pH level is 10x stronger

Ex. Is pH 2 stronger or weaker than pH 5, by how much?

Ex. What is the pH of a 5.2×10^{-5} M solution of HCl?

Reminder: SigFigs w/ pH are weird

 $\frac{1.00}{[]} \times 10^{-3} \rightarrow 3.000$

pH examples:

Ex. What's the pH of 4.20 moles of HCl in 3.15L?

Ex. What's the pH of 0.000375 moles of HNO_3 in 6235mL?

pOH – like pH but with OH

Ex. If I take 15mL of concentrated HCl (12M) and dilute it to 6L what's the pOH?

Ex. What's the pH and pOH of of a 4.23×10^{-8} M solution of HClO₄?

Hebden pg 134 – 143 try all questions

Quantitative comparison of acid strength (K_a)

Acid dissociation of weak acids usually lies to the reactant side.

Ex.

$$CH_{3}COOH_{(aq)} + H_{2}O_{(I)} \rightleftharpoons CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

We can calculate how much by using $\boldsymbol{K}_{\boldsymbol{a}}$

$$K_a(CH_3COOH) = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]} = 1.8 \times 10^{-5}$$

A K_a of $1 x 10^{\text{-2}}$ is 1000 times larger than a K_a of $1 x 10^{\text{-5}}$

From the K_a we can calculate [H⁺] and pH values

Ex. What's the pH of a 0.500 M HNO₂ solution?

Reaction	HNO₂ ≓	H+ +	NO_2^-	
[I nitial]				
C hange				
[E quilibirum]				

We can ASSUME X is small, when compared to []

Ex. What's the pH of 0.0020 M ammonium?

R eaction	$NH_4^+ \rightleftharpoons$	H+ +	NH_3
[I nitial]			
C hange			
[E quilibirum]			

Ex. If a solution of HF has a pH of 4.2 what is its concentration?

Hebden pg. 128 #31,33 & pg 152 #74-82

Base constant (K_b)

ALWAYS Have to calculate: cannot be taken from the table

Recall: K_w = K_a x K_b

So...
$$K_b = \frac{K_w}{K_a}$$

You MUST use the conjugate acid's K_{a}

Recall that the Brønsted-Lowry definition of a base means that it is a proton acceptor. So that the base will gain an H^+ from reactants to products.

 $F_{(aq)} + H_2O_{(I)} \rightleftharpoons HF_{(aq)} + OH_{(aq)}$

So $K_b = \frac{[HF][OH^-]}{[F^-]} = \frac{K_w}{K_a}$

Ex. What's the K_b of NH_3 ?

$$NH_{3(aq)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

Ex. What is the pH of a 0.200M F^- solution?

Reaction	F⁻	+ H ₂ O	\rightleftharpoons	HF	+	OH⁻
[I nitial]						
C hange	-					
[E quilibirum]						

Ex. What's the $[F^-]$ in water if water has a pH of 7.62?

 $\mathsf{F}^{\text{-}}(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \xrightarrow{} \mathsf{H}\mathsf{F}(\mathsf{aq}) + \mathsf{OH}^{\text{-}}(\mathsf{aq})$

* * * * * * * *

Hebden pg 153/4 #'s 84-93