Acid Base Equilibrium

General Acid/Base properties

Acids: taste sour (think vinegar)
React w/ active metals --> produce $\mathrm{H}_{2(\mathrm{~g})}$
Conduct electrical current
Turn litmus paper red
Reacts w/ base (neutralization)
Acid properties due to $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in solution
Bases: taste bitter (think soap)
Feels slippery
Conducts electrical current
Turns litmus blue
Reacts w/ acid (neutralization)
Basic properties due to OH^{-}in solution

Definitions:

Arrhenius

- Acids produce H^{+}in solution (Chem 11)
- Base produce OH^{-}

Brønsted-Lowry

- Acid: proton $\left(\mathrm{H}^{+}\right)$donor
- Base: proton acceptor

These can be ions (charged) OR molecules (non-charged)
Substances can also be amphiprotic \rightarrow can act as an acid OR base
Amphiprotic: $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}{ }^{-}$etc... (Both has H , and can accept H)

Conjugate acids \& bases:

Conjugate acid/base pairs differ only by the number of hydrogens, the one with 1 MORE hydrogen is the acid, the one with 1 LESS hydrogen is the base. Conjugate pairs exist on either side of an acid-base equilibrium.

Ex.

$$
\underset{\text { Acid }}{\mathrm{NH}_{4}^{+}}(\mathrm{aq})+\underset{\text { Base }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \rightleftharpoons \underset{\text { Base }}{\underset{\mathrm{NH}}{3(\mathrm{aq})}}+\underset{\mathrm{H}_{3} \mathrm{O}^{+}}{(\mathrm{aq})}
$$

Ex. Identify the conjugates in the following

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{l}) \rightleftharpoons \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}
$$

Water is amphiprotic!

Ex.

$$
\mathrm{HF}_{(\mathrm{aq})}+\mathrm{HCO}_{3}^{-(\mathrm{l})} \rightleftharpoons \mathrm{F}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}
$$

Ex.

$$
\mathrm{HCN}_{(\mathrm{aq})}+\mathrm{HSO}_{3}^{-}(\mathrm{I}) \rightleftharpoons \mathrm{CN}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}
$$

Relative Strength of acid/bases

Concentration: \# of moles (acid/base) in one liter of solution

$$
20 \mathrm{M} \rightarrow 1 \times 10^{-10} \mathrm{M}
$$

Generally:
$>5 \mathrm{M}=$ concentrated
$<5 \mathrm{M}=$ dilute
Strength: describes how readily a substance dissociates into ions.
Ex. $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad 100 \%$ $\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-} \quad \ll 100 \%$
100% dissociation = strong, less than 100% = weak
Strong acids - dissociate into $\mathrm{H}_{3} \mathrm{O}^{+} 100 \%$
Ex. $\mathrm{HClO}_{4}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
Weak acids - all other acids
Forms an equilibrium b/w un-dissociated acid and its ions.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}
$$

Usually \leftarrow towards reactants

Strong bases - there are 3 strong bases that you need to know about:
$\mathbf{N H}_{\mathbf{2}}{ }^{-}, \mathbf{O}^{\mathbf{2 -}}, \mathbf{O H}^{-}$(Usually $\mathbf{O H}^{-}$forms in aqueous solutions)

$$
\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}
$$

Weak bases - all remaining bases (on the table) are weak they form an equilibrium.

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}
$$

Levelling effect: all strong acids and strong bases are equal
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \quad$ in water the strongest acid is $\mathbf{H}_{3} \mathrm{O}^{+}$ $\mathrm{H}_{2} \mathrm{O}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}{ }^{-}$

K_{w} - the Water Constant

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \\
& \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-@ \mathbf{2 5} \mathbf{} \text {. }
\end{aligned}
$$

Ex. What is the $\left[\mathrm{OH}^{-}\right]$in a 0.005 M solution of HCl ?

Ex. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a 0.0000007 M solution of NaOH ?
pH - a common way to represent concentration of an acid
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $-\log \left[\mathrm{H}^{+}\right]$
As $\left[\mathrm{H}^{+}\right]$increases, pH decreases
Because pH is log base 10, means every pH level is 10 x stronger
Ex. Is pH 2 stronger or weaker than pH 5 , by how much?

Ex. What is the pH of a $5.2 \times 10^{-5} \mathrm{M}$ solution of HCl ?

Reminder: SigFigs w/ pH are weird

$$
\frac{1.00}{[\quad]} \times 10^{-3} \rightarrow \frac{3.000}{\mathrm{pH}}
$$

pH examples:
Ex. What's the pH of 4.20 moles of HCl in 3.15 L ?

Ex. What's the pH of 0.000375 moles of HNO_{3} in 6235 mL ?

pOH - like pH but with $\mathbf{O H}$

Ex. If I take 15 mL of concentrated $\mathrm{HCl}(12 \mathrm{M})$ and dilute it to 6 L what's the pOH ?

Ex. What's the pH and pOH of of a $4.23 \times 10^{-8} \mathrm{M}$ solution of HClO_{4} ?

Quantitative comparison of acid strength (K_{a})

Acid dissociation of weak acids usually lies to the reactant side.

Ex.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}
$$

We can calculate how much by using $\mathbf{K a}$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.8 \times 10^{-5}
$$

A K_{a} of 1×10^{-2} is 1000 times larger than a K_{a} of 1×10^{-5}
From the K_{a} we can calculate $\left[\mathrm{H}^{+}\right.$] and pH values
Ex. What's the pH of a $0.500 \mathrm{M} \mathrm{HNO}_{2}$ solution?

Reaction	$\mathrm{HNO}_{2} \rightleftharpoons$	$\mathrm{H}^{+}+$	$\mathrm{NO}_{2}{ }^{-}$
[Initial]			
Change			
[Equilibirum]			

We can ASSUME X is small, when compared to []

Ex. What's the pH of 0.0020 M ammonium?

Reaction	$\mathrm{NH}_{4}{ }^{+} \rightleftharpoons$		$\mathrm{H}^{+}+$
Initial]			NH_{3}
Change			
[Equilibirum]			

Ex. If a solution of HF has a pH of 4.2 what is its concentration?

Base constant (K_{b})

ALWAYS Have to calculate: cannot be taken from the table
Recall: $\mathbf{K}_{\mathbf{w}}=\mathbf{K}_{\mathbf{a}} \mathbf{X} \mathbf{K}_{\mathbf{b}}$
So... $\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$
You MUST use the conjugate acid's K_{a}
Recall that the Brønsted-Lowry definition of a base means that it is a proton acceptor. So that the base will gain an H^{+}from reactants to products.

$$
\mathrm{F}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{HF}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

So $\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$
Ex. What's the K_{b} of NH_{3} ?

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

Ex. What is the pH of a $0.200 \mathrm{M} \mathrm{F}^{-}$solution?

Reaction	F^{-}	$+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-}$		
[Initial]				
Change	-			
Equilibirum]				

Ex. What's the $\left[\mathrm{F}^{-}\right]$in water if water has a pH of 7.62 ?

$$
\mathrm{F}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{HF}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

$* * * * * * * *$

Hebden pg 153/4 \#'s 84-93

