Chemical reactions

Observations that may indicate that a reaction has occurred include:

- New substance (product) is formed
- Reactants consumed
- Formation of a gas or precipitate
- Colour change
- Involvement of energy (gets hot or cold, light, etc...)

When a reaction occurs, bonds between atoms break and new bonds form
Ex. Water \rightarrow hydrogen + oxygen

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}
$$

The law of conservation of mass

- The total mass of all reactants before a chemical reaction equals the total mass of all products after the reaction
- Must include gases in a closed system (sealed container)

Components of a chemical reaction

Reactants: all chemicals consumed in a reaction
Products: any substance formed in a reaction

Word Equations

Reactants \rightarrow Products
Ex. Ethanol burns in air to produce carbon dioxide and water vapour

Chemical Equations

The same number and kinds of atoms must be shown before and after a reaction.
a) Write correct formulae for all reactants and products
b) Once correct formulae are written, you cannot change the subscripts
c) Use coefficients in front of the formulae until each side is equal

Ex. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}$

| $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ | $\mathrm{NaOH}+\mathrm{H}_{2}$ |
| :--- | :--- | :--- |
| $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ | $\mathrm{NaOH}+\mathrm{H}_{2}$ |

$\mathrm{NH}_{3}+$	O_{2}	\rightarrow	NO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{3}+$	O_{2}	\rightarrow	NO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
NH_{3}	+	O_{2}	\rightarrow	NO_{2}	+
$\mathrm{H}_{2} \mathrm{O}$					

Coefficients are related to the relative numbers of molecules or moles of molecules, of reactants and products in the reaction.

This is the mole ratio
Ex.

$$
2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}
$$

For every mole of O_{2} there are 2 moles of C used, and 2 moles of CO produced. For every C used, 1 CO is produced.

Show your Phases

$$
\begin{array}{lll}
& 2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})} & \\
\mathrm{s}=\text { solid } & \mathrm{g}=\mathrm{gas} \quad \mathrm{aq}=\text { aqueous } \quad \mathrm{I}=\text { liquid } \quad \text { al = alcohol }
\end{array}
$$

Types of Reactions (recall from sci 10)

Synthesis (or combination) reactions
$A+B \rightarrow A B$

$$
\text { Ex. } \quad \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{CaCO}_{3(\mathrm{~g})}
$$

Decomposition reactions

$A B \rightarrow A+B$

$$
\text { Ex. } \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Combustion reactions

carbon source + oxygen \rightarrow carbon dioxide + water

$$
\text { Ex. } \quad \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Neutralization (acid-base) reactions
Acid + Base \rightarrow salt + water
$\mathrm{HA}+\mathrm{BOH} \rightarrow \mathrm{BA}+$ water

$$
\text { Ex. } \quad \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Carbonate reactions

Carbonate salt + acid \rightarrow salt + water + carbon dioxide

$$
\text { Ex. } \quad \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Single Replacement reactions

$\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{AC}+\mathrm{B}$ or $\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{CB}+\mathrm{A}$
Ex. $\mathrm{Fe}_{(\mathrm{s})}+\mathrm{CuCl}_{2(\mathrm{aq)}} \rightarrow \mathrm{FeCl}_{2(\mathrm{aq)}}+\mathrm{Cu}_{\text {(s) }}$
Ex. $\mathrm{Br}_{2(\mathrm{I})}+2 \mathrm{NaI}_{(\mathrm{aq})} \rightarrow 2 \mathrm{NaBr}_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{~s})}$

Double replacement reactions

$A B+C D \rightarrow A D+C B$
Ex. $\mathrm{CuNO}_{3(\mathrm{aq)}}+\mathrm{NaCl}_{(\mathrm{aq)}} \rightarrow \mathrm{CuCl}_{(\mathrm{s})}+\mathrm{NaNO}_{3(\mathrm{aq)}}$

- Not all replacement reactions which can be written will occur. The element displacing must be more active than the element being replaced (see activity series in data booklet)
**Single replacement reactions, check activity series of common metals and non-metals (generally higher up on periodic table $=$ more reactive)
** Double replacement reactions, check solubility in water

Predicting Products of a Reaction

The regularity that allows you to classify reactions into the above reaction types allows you to predict the results of reactions

Ex. $\quad \mathrm{Mg}_{(\mathrm{s})}+\mathrm{I}_{2(\mathrm{~s})} \rightarrow$ it has two elements reacting together - synthesis

Ex. $\quad \mathrm{C}_{6} \mathrm{H}_{14(I)}+\mathrm{O}_{2(\mathrm{~s})} \rightarrow$ it has oxygen and a carbon source - combustion

Ex. $\mathrm{FeSO}_{4(\mathrm{aq)}}+\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq)}} \rightarrow$ it has two salts in solution - double replacement - but will it precipitate? (Check data booklet)

Ex. $\quad \mathrm{Mg}_{(\mathrm{s})}+\mathrm{AlCl}_{3(\mathrm{aq)}} \rightarrow$ a salt plus a metal - single replacement - but will there be a reaction? (Check data booklet)

Ex. $\quad \mathrm{HCl}_{(a q)}+\mathrm{Sr}(\mathrm{OH})_{2(a q)} \rightarrow$ something with an " H " in front, and something with "OH" - neutralization

Energy relationships in Chemical Equations

Chemical reactions involve the breaking and formation of chemical bonds
Breaking bonds requires energy and making bonds releases energy
The symbol we use for energy change is $\Delta \mathrm{H}$ - called enthalpy. Calculated as
$\Delta H=H_{\text {products }}-\mathrm{H}_{\text {reactants }}$
And measured in joules (or sometimes in kilojoules)

Exothermic Reactions

More energy is released than is required to break the bonds, meaning that the products are more stable than the reactants. Energy is lost within the system

Energy is released to the surroundings - surroundings heat up, so exothermic reactions appear hot to observers

Have a negative enthalpy ($\Delta \mathrm{H}=-$)
Ex. $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}+572 \mathrm{~kJ}$
Or... $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}$

Endothermic Reactions

More energy is required to break the bonds than is released, meaning that the reactants are more stable than the products. Energy is gained within the system

Energy is taken from the surroundings - surroundings get cold, so endothermic reactions appear cold to observers

Have a positive enthalpy ($\Delta \mathrm{H}=+$)

$$
\begin{array}{ll}
\text { Ex. } & 572 \mathrm{~kJ}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \\
\text { Or... } 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+572 \mathrm{~kJ}
\end{array}
$$

Potential Energy Diagrams

ENDOTHERMIC

reaction p athway

