Nomenclature (Naming)

Ionic Compounds

Recall: Ionic compounds generally form between metals and nonmetals (really it has to do with a large difference in electronegativity which we'll discuss later)

Ex. Sodium Chloride NaCl Calcium Oxide CaO Zinc Phosphide Zn₃P₂

Notice that all the names have 1) the metal first and 2) the non-metal changes it's ending to "ide"

Ionic Compounds with multivalent metals

Alkali metals (column 1), and alkali earth (column 2) metals have a known charge; meaning that their charge is always the same. There are some transition metals (column 3-12) that have multiple charges.

Ex. Copper Chloride \rightarrow CuCl or CuCl₂ Iron Bromide \rightarrow FeBr₂ or FeBr₃

Both copper and iron have at least two possible charges; we call these "multivalent" because they can take on multiple different valences (outer electrons). Because there are multiple possibilities, we need a way to denote which copper or iron we're dealing with; we use Roman numerals (I, II, III, IV, V, VI, VII, VIII, IX, X)

Ex. CuCl become copper (I) chloride CuCl₂ becomes copper (II) chloride FeBr₃ becomes iron (III) bromide

So to do this properly you need to know the charges on the metal AND the non-metal to figure out their proportions. **Try these**

Ex.	Iron (III) sulphide	Fe_2S_3
	Sodium nitrate	NaNO ₃
	Calcium phosphide	Ca ₃ P ₂
	Molybdenum (II) oxide	MoO

Covalent (or molecular) Compounds

Recall: covalent compounds form between two (or more) non-metals (this has to do with a small difference in electronegativity)

Ex. Carbon and chlorine CCl₄ Nitrogen and hydrogen NH₃

For both of the above (C + Cl) and (N + H) there are multiple possibilities of how they can combine nitrogen and hydrogen, for example

 NH_3 - ammonia NH_4^+ - ammonium N_2H_4 - hydrazine

So we need a way to distinguish between 1 nitrogen and 3 hydrogens; 1 nitrogen and 4 hydrogens; and 2 nitrogens and 4 hydrogens. The answer is PREFIXES!

1 = mono	6 = hexa
2 = di	7 = hepta
3 = tri	8 = octa
4 = tetra	9 = nona
5 = penta	10= deca

So NH_3 = nitrogen trihydride, N_2H_4 = dinitrogen tetrahydride etc...

Hydrates

Sometimes we tack on a water molecule... or 10. Just use the prefixes above to say how many waters you have, with the ending hydrate

Ex.	CuCl ₂ ·5H ₂ O	copper(II)chloride pentahydrate
	NaHCO ₃ 2H ₂ O	sodium bicarbonate dihydrate

Bases and Acids

Bases are easy, acids are hard. We'll start with bases: bases are (at the chem 11 level) always a metal plus hydroxide. It's just that easy

Ex.	NaOH	sodium hydroxide
	Ca(OH) ₂	calcium hydroxide
	AI(OH) ₃	aluminum hydroxide
		etc

Acids naming

Inorganic acids always start with H, and there are 3 types when it comes to naming. Those ending in "ate", "ite", and "ide".

"ate" becomes "ic" "ite" becomes "ous" "ide" becomes "hydro - - - ic"

Ex.	HNO ₃	uses	nitr ate	SO	nitr ic acid
	HCIO ₂	uses	chlor ite	SO	chlor ous acid
	HCI	uses	chlor ide	SO	hydrochloric acid
	HCIO ₄	uses	perchlor ate	SO	perchlor ic

Sulphur and Phosphorus containing compounds add the ending "ur" or "or" before then new ending

Ex . H ₂	H_2SO_3	sulph ur ous acid
	H_3PO_4	phosph or ic

Organic Acids

Organic Acids always have a "- COOH" part associated with them, and the H in COOH is the acidic H. So sometimes you might see COO⁻ part for the ion associated:

Ex. Acetic acid / Acetate

 CH_3COO^- – Acetate (or Ethanoate) CH_3COOH – Acetic Acid (or Ethanoic Acid)

CH₃CH₂CH₂COO – Propanoate CH₃CH₂CH₂COOH – Propanoic Acid